已知函数f(x)=x^2+2x+1,若存在实数t,当x属于[1,m]时,f(x+t)<=x恒成立,实数m的最大值是什么
人气:382 ℃ 时间:2019-08-18 18:46:41
解答
因为 f(x+t)
推荐
- 已知函数f(x)=x2+2x,若存在实数t,当x∈[1,m]时,f(x+t)≤3x恒成立,则实数m的最大值为_.
- 已知函数f(x)=x2+2x+1,若存在实数t,当x∈[1,m]时,f(x+t)≤x恒成立,则实数m的最大值是( ) A.1 B.2 C.3 D.4
- 已知函数f(x)=x^2+2x,若存在实数t,当x属于[1,m]时,f(x+t)≤3x恒成立,则实数m的最大值为](求高手教方法
- 已知函数f(x)=2^2x-5/2*2^x+1-6,其中x属于[0,3], (1)求f(x)最大值和最小值 (2)若实数a满足f(x)-a≧0恒成立,求a
- 设函数F(X)=X^3-9/2X^2+6X-a (1)对于任意实数x.f '(x)>=m 恒成立,求m的最大值
- 计算定积分f(上面是b下面是0)x^dx
- 移动火柴棍 74-4=4只能移动一个火柴
- 氨基酸和蛋白质的区别是什么?
猜你喜欢