> 数学 >
已知3阶矩阵A的特征值为-1,1,2,设B=A^2+2A-E的特征值为?
为什么相应特征值为:x^2+2x-1,这个新矩阵并不是对角线上元素相加,其它元素也改变了值?为什么还可以这样算?
人气:322 ℃ 时间:2019-10-14 04:57:09
解答
-2,2,5,把原来的特征值带入方程即可.第一个理解,设v是A的对应特征值a的特征向量,那么Bv=(a^2+2a+-1)v,v也是B的对应于a^2+2a+-1的特征向量.从而因为A有个特征值,对应三个特征向量v1,v2,v3,所以我们也找到了B的三个特...感谢!你的意思是可逆阵P使A对角化,也可同时使B对角化(why?代入B的表达式可得出关于A的对角阵的表达式),由题设条件已知A的对角阵,而求出B的对角阵,从而求出特征向量.但第一个理v是A的对应特征值a的特征向量,那么Bv=(a^2+2a+-1)v,v也是B的对应于a^2+2a+-1的特征向量(why?)这个如何理解?计算一下就出来了,另外注意“对角阵的表达式”(即一个对角阵的方幂,或代入一个多项式,还是对角的。第二,v是A的对应特征值a的特征向量,那么Bv=(A^2+2A-E)v=(a^2+2a+-1)v,根据特征向量的定义,v也是B的对应于a^2+2a+-1的特征向量
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版