已知有相同两焦点F1,F2的椭圆 X^2/m一y^2=1 (m>1) 和双曲线X^2/n-y^2=1(n>0),P是他们的一个焦点,则.
已知有相同两焦点F1,F2的椭圆 X^2/m一y^2=1 (m>1) 和双曲线X^2/n-y^2=1(n>0),P是他们的一个焦点,则三角形PF1F2的形状是.
人气:345 ℃ 时间:2019-09-17 12:03:05
解答
椭圆应是 X^2/m+y^2=1,a1=√m,b1=1,c=√(m-1),其中a1、b1是椭圆的长短半轴,
根据椭圆定义,|PF1|+|PF2|=2a1=2√m,(1)
双曲线实半轴a2=√n、虚半轴为b2=1,c=√(n+1)
根据双曲线定义,||PF1|-|PF2||=2a2=2√n,
这里设|PF1|>|PF2|,|PF1|-|PF2|=2√n,(2)
(1)和(2)式联立,
|PF1|=(√m+√n),
|PF2|=(√m-√n),
PF1^2+PF2^2=m+n-2√mn+m+n+2√mn
=2(m+n),
F1F2^2=(2c)^2=4(m-1)=4(n+1),
2F1F2^2=4m-4+4n-4=4m+4n,
F1F2^2=2(m+n)=PF1^2+PF2^2,
∴根据勾股逆定理,
三角形PF1F2是直角三角形.
推荐
- 若椭圆x^2/m+y^2=1(m>1)和双曲线x^2/n-y^2=1有共同的焦点F1,F2,且P是两条曲线的一个交点
- 已知椭圆x^2/m +y^2/n=1与双曲线x^2/p-y^2/q=1(m,n,p,q∈R+)有共同的焦点F1、F2,P是椭圆和双曲线的一个交点,则|PF1|*|PF2|=
- 椭圆x^2/m+y^2/n=1(m>n>0)和双曲线x^2/s-y^2/t=1(s,t>0)有相同的焦点F1,F2,
- 已知双曲线x^2/a^2-y^2/b^2=1(a>0,b>0)左右两个焦点分别为F1(-c,0),F2(c,0)若椭圆上存在点P
- 若椭圆x^2/a+y^2=1(a>b>0)和双曲线x^2/m-y^2/n=1(m>0,n>0)有相同的焦点f1和f2,
- 南辕北撤是什么意思啊
- 第一题 (-5/12)的2007次方 * (2.4)的2006次方等于
- 普通的换算单位题:4升=( )毫升=( )立方分米
猜你喜欢