函数y=x^-4x+2在[0,m]上有最大值2,最小值-2,求m的范围
人气:359 ℃ 时间:2019-08-18 10:31:14
解答
y=x^2-4x+2
=(x-2)^2-2
其图像的结称轴为x=2
结合图像可知,m的范围:2<=m<=4
推荐
- 函数f(x)=x2-4x+5在[0,m]上的最大值为5,最小值为1,则m的取值范围是_.
- 已知函数y=x^2+4x-5,试求在-3≤x≤0范围内函数的最大值和最小值
- 若0≤x≤2,求函数y=4x-2*2∧x+5的最大值和最小值
- 函数f(x)=x2-4x+5在区间[0,m]上的最大值为5,最小值为1,则m的取值范围是( ) A.[2,+∞) B.[2,4] C.(-∞,2] D.[0,2]
- 求函数f(x)=-x^2+4x-3,x∈[0,m]的最大值与最小值,
- 已知向量a,b满足向量a的模=1,向量a*(向量a-向量b)=0,则向量b的模的取值范围是?
- 解释下面加点词的意思
- gee,do i know u,that such emotional young man
猜你喜欢