> 数学 >
过坐标原点O引抛物线y=(x-h)²+k(k>0)的两条切线,切点分别为A,B1求证线段AB被y轴平分
人气:392 ℃ 时间:2020-05-02 07:52:01
解答
设切线为:y=mx,
∵y=(x-h)²+k,∴y'=2x-2h,∴m=(2x-2h)
由下列方程组:
y=(x-h)²+k=x²-2hx+h²+k .①
y=(2x-2h)x=2x²-2hx .②
①-②得:x²=h²+k
∴ x1=根号(h²+k),x2=-根号(h²+k)
AB中点的横坐标x=x1+x2=0
∴ 线段AB被y轴平分
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版