设f(x)为可导函数,且满足lim[f(1)+f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率
设f(x)为可导函数,且满足lim[f(1)-f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率
人气:274 ℃ 时间:2019-08-15 10:51:39
解答
lim[f(1)-f(1-2x)]/2x=-1 (中间是减号吧,否则有错)
所以
f'(1)=-1
即y=f(x)在点(1,f(1))处的斜率为-1.是减号谢谢咯~
推荐
- 设f(x)为可导函数,且满足lim[f(1)-f(1-x)]/2x=-1,x趋于0,求曲线y=f(x)在点(1,f(1))处的斜率
- 设f(x)为可导函数,且满足lim[f(1)+f(1-x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率
- 设f(x)为可导函数,且满足lim[f(1)+f(1-2x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(1,f(1))处的斜率
- 设f(x)为可导函数,且满足lim[4+f(1-x)]/2x=-1,x趋于0时,求曲线y=f(x)在点(,f(1))处的切线方程
- lim[f(1)-f(1-x)/2x]=-1求曲线y=f(x)在(1,f(1))上的斜率 x趋于0时,
- have you seen the p _ there is a new film tonight.
- 保留5位小数是0.78的最小的5位小数是多少?
- 56的7分之2比8分之7的24倍少多少?算式
猜你喜欢