三角形 ABC∽三角形DEF,相似比为k,AD,DN分别是BC,EF上的中线,求证AD/DN=k
人气:399 ℃ 时间:2020-04-09 08:18:34
解答
(图片见附件)
由△ABC∽△DEF
得AB/DE=BC/EF=k,∠B=∠E
由AD和DN是中线,得BC/EF=BD/EN=k
所以△ABD∽△DEN
所以AD/DN=BD/EN=k
推荐
- 如图,在三角形ABC与三角形DEF中,AB=DE,BC=EF,AM、DN分别是BC、EF上的中线,且AM=DN,说明△ABC≌△DEF的理由
- 已知:△ABC和△DEF中,AB=DE,BC=EF,AM是△ABC的中线,DN是△DEF的中线,AM=DN,求证:△ABC≌△DEF.
- 已知:如图,AD是△ABC的角平分线,且AE=AC,EF∥BC交AC于F. 求证:CE平分∠DEF.
- 三角形ABC全等于三角形DEF,C、F在AD上.求证?(1)AF=DC.(2)EF//BC?
- 如图1所示,在三角形abc中,角1等于角2,角C大于角B,E为AD上一点,且EF垂直bc于f.1、试探索def与角b角
- 天天都下雨,什么时候才能看到太阳呢?
- 求有机化学中,r/s构型标记法中次序规则的详解.
- 盐水选种的原理是什么?
猜你喜欢