1.
Sn=2^n-1
an=Sn-S(n-1)=2^n-1-[2^(n-1)-1]=2^(n-1)
an²=4^(n-1)
{an²}为等比数列,首项是1,公比4
a1²+a2²+a3²+……+an²
=(1-4^n)/(1-4)
=(4^n-1)/3
2.
S30=a1(q^30-1)/(q-1)
S10=a1(q^10-1)/(q-1)
S30=13S10
q^30-1=13(q^10-1)
(q^10-1)(q^20+q^10+1)=13(q^10-1)
q^20+q^10-12=0
(q^10+4)(q^10-3)=0
q^10=3(q^10>0)
S10+S30=140
a1(q^10-1)/(q-1)+a1(q^30-1)/(q-1)=140
[a1/(q-1)]*(3-1)+[a1/(q-1)]*(27-1)=140
a1/(q-1)=5
S20=a1(q^20-1)/(q-1)
=[a1/(q-1)](q^20-1)
=5*(9-1)
=40
3.
设公比为q
a1+a2+a3+a4+a5+a6+a7+a8+a9+a10+…+a(2n-1)+a2n
=a1+a1q+a3+a3q+a5+a5q+a7+a7q+…+a(2n-1)+a(2n-1)q
=(1+q)(a1+a3+a5+a7+a9+…+a(2n-1))
a1+a3+a5+a7+a9+…+a(2n-1)即奇数项之和.
则:1+q=3
q=2