设A为是对称矩阵,且A^3-3A^2+5A-3I=0 ,问A是否为正定矩阵?
人气:391 ℃ 时间:2020-03-29 22:43:23
解答
解: 设a是A的特征值
则 a^3-3a^2+5a-3 是 A^3-3A^2+5A-3I = 0 的特征值
所以 a^3-3a^2+5a-3 = 0
即 (a-1)(a^2-2a+3)=0
因为A是实对称矩阵, A的特征值都是实数
所以 a=1.
即A的特征值都大于0.
所以A是正定矩阵.
推荐
- 设A为三阶对称矩阵,且满足A²+3A=0,已知A的秩为2,试问:当K为何值时,矩阵A+kE为正定矩阵
- A为实对称矩阵,且满足A^2-3A+2E=0,证明:A为正定矩阵
- 对称矩阵a为正定矩阵,可以直接说a为实对称矩阵吗?对称矩阵,正定矩阵,实对称矩阵之间的关系是什么呢?
- 矩阵A与B合同,B为正定矩阵,那么A是正定矩阵吗?
- 设A ,B均为正定矩阵,则__ a.AB是正定矩阵,b.A+B是正定矩阵 c.A-B是正定矩阵 d.|A|=|B
- 已知椭圆2分之x方+Y方=1 (1)求斜率为2的平行弦的中点轨迹方程
- 一篇初三英语选词填空!纠结
- 将燃着的木条分别插入空气和呼出的气体中
猜你喜欢