A为实对称矩阵,且满足A^2-3A+2E=0,证明:A为正定矩阵
人气:289 ℃ 时间:2020-04-11 09:01:01
解答
我觉得可以逆用凯莱-汉密尔顿定理,令q为特征值,p为特征向量,则A*p=q*p.将A^2-3A+2E=0两边同乘p,则(q^2-3q+2)*p=0,且p非0.则可以解出q=1,2.特征值均大于0,则A正定.
这种类型题目很多,当然还有其他解法,一时回忆不起来了.
推荐
- 设A为实对称矩阵,t为实数,证明:当t充分大时,矩阵tE+A为正定矩阵
- 设A、B均为N阶实对称正定矩阵,证明:如果A—B正定,则B的逆阵减去A的逆阵正定.
- 设A为是对称矩阵,且A^3-3A^2+5A-3I=0 ,问A是否为正定矩阵?
- 设A为m阶实对称矩阵且正定,B为m×n矩阵,证明:BTAB为正定矩阵的充要条件是rankB=n
- 对称矩阵a为正定矩阵,可以直接说a为实对称矩阵吗?对称矩阵,正定矩阵,实对称矩阵之间的关系是什么呢?
- 设函数f(x)=ax^2+bx^2+cx在x=1和x=-1处有极值,且f(1)=-1,求abc的值,并求出相应
- “慧”字组词
- she__( sing)in the hall.现在进行时怎么做
猜你喜欢