矩阵A与B合同,B为正定矩阵,那么A是正定矩阵吗?
矩阵A与B合同,B为正定矩阵,那么A正定矩阵吗?(请予以证明)
要先证明A为可逆阵
人气:191 ℃ 时间:2020-01-28 04:08:21
解答
答案是肯定的.而且我认为问题没有那么复杂.B是正定矩阵,则存在可逆矩阵T,使得B=TT’.(右上角一撇代表转置,下同)A与B合同,则存在可逆矩阵P,使得A=PBP’.令Z=PT.显然Z为可逆矩阵,且A=ZZ’.所以A为正定矩阵.显然A...
推荐
猜你喜欢
- 将分子式为C4H10的烃在高温下发生裂解,测得裂解混合气的平均式量为34,则C4H10的裂解率是( )
- 一道英语填空题(少许空不知道怎么填)
- 已知偶函数的两条对称轴,X=1和X=2,证明它是周期函数
- 圆周率你们知道的最多有几位呢?
- 帮忙标出音标急 啊!
- 电解饱和碳酸钠 制取碳酸铜
- eat,with,meat,vegetables,the,like,potatoes连词成句
- 1+4+7+10+13+-----+298+301等于多少?