已知等差数列(an}得公差d不等于零,前n项的和为Sn 求证:点P1(1,S1/1),(2,S2/2),(3,S3/3).(n,Sn/
已知等差数列(an}得公差d不等于零,前n项的和为Sn
求证:点P1(1,S1/1),(2,S2/2),(3,S3/3).(n,Sn/n)在同一条直线L1上
过点Q1(1,a1),Q2(2,a2)做直线L2.设L1与L2的夹角为A,求证tanA小于等于(四分之根二)
第一问不用了
人气:485 ℃ 时间:2020-04-27 04:58:59
解答
根据题意有:
直线l2的斜率k2=(a2-a1)/(2-1)=a2-a1;
直线l1的斜率k1=(s2/2-s1)/(2-1)=s2/2-s1=(a1+a2)/2-a1=(1/2)(a2-a1).
根据到角公式有:
tanA=(K2-K1)/(1+K1K2)=(1/2)(a2-a1)/[1+(1/2)(a2-a1)]^2=(a2-a1)/[2+(a2-a1)^2]
=1/[2/(a2-a1) +(a2-a1)];
对于分母,运用不等式定理有:
[2/(a2-a1) +(a2-a1)]>=2√[2/(a2-a1) *(a2-a1)]=2√2;
所以有:
tanA<=1/2√2=√2/4.
推荐
- 已知;数列a(n)是公差d≠0的等差数列,其前n项和为sn 求证;点p1(1,s1/1),p2(2,s2/2)***pn(n,s
- 已知sn是公差不为0的等差数列{an}的前n项和,且s1,s2,s3成等比数列,则a1分之a2+a3等于解题步骤
- 若{An}是公差不为零的等差数列,Sn是其前项n项的和,且S1,S2,S3成等比数列 1求S1.S2.S3的公比
- 数列an是首项为3公差为2的等差数列其前n项和为Sn求An=1/S1+1/S2+1/S3+...+1/Sn
- 在以d为公差的等差数列an中,设S1=a1+a2.+an,S2=an+1+an+2+a2n,S3=a2n+1+a2n+a3n,
- 我们不能不惊叹它生命力的顽强.改成反问句.
- am的用法,比如:I want to go to the zoo.I a cute girl.
- 在春天里你爸爸通常在干什么用英语说
猜你喜欢