数列an是首项为3公差为2的等差数列其前n项和为Sn求An=1/S1+1/S2+1/S3+...+1/Sn
人气:354 ℃ 时间:2019-10-18 02:36:36
解答
an = a1 + (n-1)d = 2n + 1
Sn = [n(a1 + an)]/2 = n(n+2)
1/Sn = 1/n(n+2) = [1/n - 1/(n+2)]/2
An = S1 + S2+ ...+ Sn = 21/40 - (2n+3)/2(n+2)(n+1)
推荐
- 设数列{an}是首项为a1(a1>0),公差为2的等差数列,前n项和为Sn,且根号S1,根号S2,根号S3成等差数列,
- 设数列(an)是首项为a1(a>0),公差为2的等差数列,其前n项和为Sn,且√s1,√s2,√s3
- 在以d为公差的等差数列an中,设S1=a1+a2.+an,S2=an+1+an+2+a2n,S3=a2n+1+a2n+a3n,
- 等差数列{an}中,a1=3,公差d=2,Sn为前n项和,求1/S1+1/S2+…+1/Sn.
- 已知等差数列{an}的前n项和为Sn,若S33−S1=1,则数列{an}的公差是( ) A.12 B.1 C.2 D.3
- 这难道是天计算了如此精确的距离?改陈述句
- 15分之8的分子与分母都加上相同的数后,约分是10之9,加上的数是
- 3m(2x+y)的平方减去3mn的平方 因式分解
猜你喜欢