△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE. (1)线段AF和BE有怎样的大小
人气:377 ℃ 时间:2019-08-18 13:18:54
解答
(1)AF=BE.在△AFC和△BEC中,∵△ABC和△CEF是等边三角形,
∴AC=BC,CF=CE,∠ACF=∠BCE=60° ∴△AFC≌△BEC. ∴AF=BE.
(2)成立. 理由:在△AFC和△BEC中,∵△ABC和△CEF是等边三角形,
∴AC=BC,CF=CE,∠ACB=∠FCE=60°.∴∠ACB-∠FCB=∠FCE-∠FCB.
即∠ACF=∠BCE.∴△AFC≌△BEC.∴AF=BE.
推荐
- 如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE (1)线段AF和BE有怎样的大小关系?请证明你的结论; (2)将图a中的△CEF绕点C旋转一定的角度,得到图b
- 如图所示,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE,
- 如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE (1)线段AF和BE有怎样的大小关系?请证明你的结论; (2)将图a中的△CEF绕点C旋转一定的角度,得到图b
- 三角形ABC和三角形CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BF.
- 已知两个共一个顶点的等腰直角三角形ABC,直角三角形CEF,角ABC=角CEF=90°,连接AF,M是AF的中点,连接MB,ME.(1)如图1,当CB与CE在同一直线上时,求证:MB//CE; (2)如图1若CB=a,CE=2a,求BM,M
- 已知X的平方加上X加1等于0,求X的立方加上2乘以X的平方加上2乘以X加3的值
- 18%=X分之6.5
- 一个两位数 合为10 把这个两位数倒过来 现在的数比原来的数大了54 原来的这个两位数是多少
猜你喜欢