在极坐标系下计算∫∫Dx√(^2+y^2)dxdy,其中D为x^2+y^2=1曲线与X轴,Y轴在第一象限围成的区域.
人气:386 ℃ 时间:2020-01-29 11:28:21
解答
∫∫x√(x²+y²)dxdy=∫dθ∫rcosθ*r*rdr (作极坐标变换)
=∫cosθdθ∫r³dr
=[(sinθ)│]*[(r^4/4)│]
=[sin(π/2)-sin(0)]*(1^4/4-0^4/4)
=1*(1/4)
=1/4.
推荐
- ∫∫(D)(X平方+Y平方)dxdy,其中D为曲线X平方+Y平方=1与X轴,Y轴在第一象限围成的平方区域
- 计算∫∫Dx√(^2+y^2)dxdy,其中D是由圆周a
- 计算二重积分I= ∫∫e`(x`2)dxdy,(D在积分号)下面其中D是第一象限中曲线y=x,y=x·3所围成的区域
- 计算 ∫∫D√(5-x^2-y^2)dxdy,D是由圆x^2+y^2=1,x^2+y^2=4及直线y=x,y=0所包围的在第一象限内的区域.
- 计算二重积分:∫∫(D)ln(1+x^2+y^2)dxdy,其中D是由圆周x^2+y^2=1及坐标轴所围的在第一象限内的闭区域
- 观察食物的包装可以获取这种食品有关(),便于我们了解食物的()()()方法,我们的饮食就不再是()的.包装上的()为我们科学()营养提供了帮助
- 一桶油,连桶重12千克.用去一半后,连桶重7千克.油重多少千克?
- 一种抛硬币游戏的规则是抛掷一枚硬币,每次正面向上得1分,反面向上得2分,求恰好得n分的概率(n为正整数)
猜你喜欢
- 磷酸钙中五氧化二磷含量一般是是多少
- 在平面直角坐标系中,点p(2a+b,3)与点p'(2,a+2b)关于原点对称,求a-b的值
- 小刚和小丽都喜欢集邮,小刚和小丽原有邮票张数的比是1:5.小丽说:“我给他一张以后,我们邮票的张数比就是1:4了.”小刚说:“我们两个共有多少张邮票?”
- The bird fell from the tall tree,it was ______.(died,dead)
- 英语像in front of、behind、next等方向词语,有没有更多像这样的词?请写出.
- 如果我能同他一起去,那就太好了英语翻译
- 观察下列形声字的结构特点,再写几个、
- F1,F2分别是椭圆x2/4+y2=1的两个焦点,问:在椭圆上是否存在点P,使PF1⊥PF2?如果存在,求出点P的坐标,如果不存在,说明理由.(焦点在X轴上)