已知向量a=(m,n),b=(coswx,sinwx),其中m,n,w是常数,且w>0,x∈R,函数y=f(x)=向量a*向量b的周期为π,当x=π、12时,函数取得最大值1.
(1)求函数f(x)的解析式
(2)写出y=f(x)的对称轴,并证明之
人气:345 ℃ 时间:2019-08-20 19:19:52
解答
已知向量a=(m,n),b=(coswx,sinwx),其中m,n,w是常数,且w>0,x∈R,函数y=f(x)=向量a*向量b的周期为π,当x=π/12时,函数取得最大值1.
(1)求函数f(x)的解析式
(2)写出y=f(x)的对称轴,并证明之
【解】:向量a*向量b=mcoswx+nsinwx=√(m^2+n^2)sin(wx+φ)【tanφ=m/n】
周期为π,==>w=2
当x=π/12,最大值1
√(m^2+n^2)=1
π/6+φ=π/2+2kπ
解得m=±√3/2,n=±1/2
所以:f(x)=sin(2x+π/3).
【2】:对称轴2x+π/3=π/2+kπ
解得:x=π/12+kπ/2
推荐
- 已知向量a=(sinwx,sinwx),b=(sinwx,-coswx),(w>0),函数f(x)=a*b的最小正周期为π/2.求y=f(x)的最大值与取得最大值的x集合?
- 已知向量m=(2coswx,-1),n=(sinwx-coswx,2),其中w>0,函数e(x)=m乘以n+3的周期为拍,求w的值...
- 已知向量a=(2coswx,1),b=(sinwx+coswx,-1),w∈R,w>0,设函数f(x)=a*b(x∈R),若f(x)的最小正周期为π/2
- 已知向量a=(根号3,coswx),向量b=(sinwx,1),函数f(x)=向量a*向量b,且最小正周期为4π.(1)求w的值?...
- 已知向量m=(1,coswx),向量n=(sinwx,根号3),(w>0),函数f(x)=m*n
- 根毛细胞最大的特点是表皮细胞形成的什么?
- 如何提高数学做练习速读
- 观沧海中表现作者雄心壮志诗句
猜你喜欢