已知圆C:x2+y2-2x+4y-4=0,一条斜率等于1的直线l与圆C交于A,B两点.
(1)求弦AB最长时直线l的方程;
(2)求△ABC面积最大时直线l的方程.
人气:249 ℃ 时间:2020-03-18 18:40:25
解答
(1)∵L过圆心时弦长AB最大,圆心坐标为(1,-2),∴L的方程为x-y-3=0(4分)(2)△ABC的面积S=12CA•CBsin∠ACB=92sin∠ACB,当∠ACB=π2时,△ABC的面积S最大,此时△ABC为等腰三角形;设L方程为y=x+m,则圆心...
推荐
- 已知圆C:x^2+y^2-2x-4y-4=0,一条斜率等于1的直线L与圆C交于A,B,求三角形ABC面积最大时圆的方程
- 三角形ABC的两个顶点A、B的坐标分别是(-6,0)、(6,0),边AC,BC所在直线的斜率之积等于−4/9.求顶点C的轨迹方程,并画出草图.
- 椭圆X2/2+Y2=1与斜率为1的直线L交于A,B两点,F是左焦点,求三角形ABF1的面积的最大值
- 已知抛物线F:x^2=4y (1)三角形ABC的三个顶点在抛物线F上,记三角形ABC的三边AB,BC,CA所在直线的斜率分...
- 三角形ABC的两点A、B的坐标分别是(-6,0)(6,0),AC、BC所在直线的斜率之积等于-4/9,
- 设函数f(x)=ax^2+bx^2+cx在x=1和x=-1处有极值,且f(1)=-1,求abc的值,并求出相应
- “慧”字组词
- she__( sing)in the hall.现在进行时怎么做
猜你喜欢