| 1 |
| 2 |
| 1 |
| 2 |
(2)假设当n=k时等式成立,
即1−
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2k−1 |
| 1 |
| 2k |
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 2k |
则1−
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2k−1 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| k+2 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
综合(1)(2),等式对所有正整数都成立.
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2n−1 |
| 1 |
| 2n |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 1 |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2k−1 |
| 1 |
| 2k |
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 2k |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2k−1 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 1 |
| k+2 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |