设过焦点F(1,0)的直线为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2).
代入抛物线方程消去y得k2x2-2(k2+2)x+k2=0.
∵k2≠0,∴x1+x2=
| 2(k2+2) | 
| k2 | 
∵|AB|=
| (1+k2)(x1−x2)2 | 
| (1+k2)[(x1+x2)2−4x1x2] | 
| (1+k2)[ 
 | 
∴k2=1.
∴△OAB的重心的横坐标为x=
| 0+x1+x2 | 
| 3 | 
| 2(k2+2) | 
| k2 | 
| (1+k2)(x1−x2)2 | 
| (1+k2)[(x1+x2)2−4x1x2] | 
| (1+k2)[ 
 | 
| 0+x1+x2 | 
| 3 |