设过焦点F(1,0)的直线为y=k(x-1)(k≠0),A(x1,y1),B(x2,y2).
代入抛物线方程消去y得k2x2-2(k2+2)x+k2=0.
∵k2≠0,∴x1+x2=
2(k2+2) |
k2 |
∵|AB|=
(1+k2)(x1−x2)2 |
(1+k2)[(x1+x2)2−4x1x2] |
(1+k2)[
|
∴k2=1.
∴△OAB的重心的横坐标为x=
0+x1+x2 |
3 |
2(k2+2) |
k2 |
(1+k2)(x1−x2)2 |
(1+k2)[(x1+x2)2−4x1x2] |
(1+k2)[
|
0+x1+x2 |
3 |