AD是三角形ABC的角平分线,AD的中垂线交AB于F,交BC的延长线于E,连结DF,求证∠EAC=∠B.
人气:301 ℃ 时间:2019-08-19 21:09:23
解答
证明:三角形ADE为等边三角形,所以∠ADE=∠EAD,∠ADE=∠B+∠BAD,∠EAD=∠DAC+∠EAC,因为AD是三角形ABC的角平分线,所以∠BAD=∠DAC,于是∠EAC=∠B.
推荐
- 如图,AD是△ABC的角平分线,AD的中垂线分别交AB、BC的延长线于点F、E 求证:(1)∠EAD=∠EDA;(2)DF∥AC;(3)∠EAC=∠B.
- 三角形ABC中,AB大于BC,BC的垂直平分线DF交三角形ABC的外角平分线AD于D,DE垂直AB于E,求证:BE-AC=AE
- 如图,△ABC的边BC的中垂线DF交△BAC的外角平分线AD于D,F为垂足,DE⊥AB于E,且AB>AC,求证:BE-AC=AE.
- 如图,△ABC的边BC的中垂线DF交△BAC的外角平分线AD于D,F为垂足,DE⊥AB于E,且AB>AC,求证:BE-AC=AE.
- 在三角形ABC中,AD平分角BAC,AD的垂直平分线FE交BC的延长线与E,连接AE.求证:角EAC=角B
- 一辆汽车5分之3小时行45千米照这样的速度,从甲地到乙地共行50分钟,甲乙两地相距多少千米
- 启动他励直流电动机时,为什么一定要先加励磁?电枢直接接通电源会有什么后果?
- 两个连续自然数的倒数之和是72分之17,这两个连续自然数分别是多少
猜你喜欢