设A是n阶方阵,证明齐次线性方程组AX=0与(A^T)AX=O是同解方程组.
人气:148 ℃ 时间:2020-02-05 13:52:08
解答
A是实方阵吧.
证明:记A'=A^T
(1)设X1是AX=0的解,则AX1=0
所以A'AX1=A'(AX1)=A'0=0
所以X1是A'AX=0的解.
故 Ax=0 的解是 A'AX=0 的解.
(2)设X2是A'AX=0的解,则A'AX2=0
等式两边左乘 X2'得 X2'A'AX2=0
所以有 (Ax2)'(Ax2)=0
所以 AX2=0.[长度为0的实向量必为0向量,此时用到A是实矩阵]
所以X2是AX=0的解.
故A'AX=0的解是AX=0的解.
综上知齐次线性方程组AX=0与A'AX=O是同解方程组.
推荐
- n 阶方阵 A ,齐次线性方程组 AX = 0 有两个线性无关的解向量,A*为 A 的伴随矩阵,证明:
- 设A为m×n实矩阵,证明线性方程组Ax=0与A'Ax=0同解
- 设α1,α2,α3是齐次线性方程组Ax=0的一个基础解系.证明α1,α1+α2,α2+α3也是Ax=0的基础解系.
- 证明题:设a1,a2,a3是齐次线性方程组Ax=0的基础解系,
- 设a为n阶实方阵,x与b均为实数域上的n元列向量,证明,线性方程组ax=b有解的充分必要条件是b与方程组a'x=0的解空间w正交
- Their prices are really high,_____ ______(反义疑问句)
- 《雨林毁灭——世界性的灾难》一文中,用了什么说明顺序?今晚就要.
- 近体诗分为哪两种
猜你喜欢