如图,(1)由题意求得AE=
| 2 |
| 2 |
∴AE⊥DE.
又DE⊥AA1,AA1∩AE=A,AA1⊂面A1AE,AE⊂面A1AE,
∴DE⊥面A1AE,∴平面A1AE⊥平面A1ED,
∵A1A=AE=
| 2 |
取A1E的中点H,AH⊥A1E,AH⊥DE,A1E∩ED=E,A1E⊂面A1DE,
ED⊂面A1DE,
∴AH⊥面A1DE,
AH为点A到面A1DE的距离.
∵AH=1,∴点A到面A1DE的距离为1
(2)在三角形A1ED中,∵H是A1E的中点,G为三角形A1ED的重心,
又∵AH⊥面A1ED,过点G作GM∥AH交AD于M,
则MG⊥A1ED,且AM=
| 1 |
| 3 |
故存在实数λ=
| 1 |
| 3 |
| AM |
| AD |

