对线性方程组 aX1+X2+X3=1 X1+aX2+X3=a X1+X2+aX3=a*a 而言,问a为何值时,方程组有唯一解?或有无穷多解
对线性方程组
aX1+X2+X3=1
X1+aX2+X3=a
X1+X2+aX3=a*a
而言,问a为何值时,方程组有唯一解?或有无穷多解?
人气:469 ℃ 时间:2020-04-01 15:32:31
解答
增广矩阵为λ 1 1 11 λ 1 λ1 1 λ λ^2先计算系数矩阵的行列式λ 1 1 1 λ 1 1 1 λ= (λ+2)(λ-1)^2.当λ≠1 且λ≠-2 时,由Crammer法则知有唯一解.当λ=1时,增广矩阵为1 1 1 11 1 1 11 1 1 1->1 1 1 10 0 0 00 0...得到方程组的增广矩阵为:(a 1 1 1 1 a 1 a 1 1 a a^2)对其进行初等行变换,得到(a 1 1 1 1 a 1 a 1 1 a a^2) 第1行减去第3行乘a,第2行减去第3行 = (01-a1-a^21-a^30a-11-a a -a^21 1 a a^2)第1行和第3行交换 =(1 1 a a^20a-11-a a -a^201-a1-a^21-a^3)第3行加上第2行 =(1 1 a a^20a-1 1-aa -a^20 02-a-a^2 1+a-a^2-a^3)=(1 1 a a^20a-11-aa(1-a)0 0(2+a)(1-a) (1+a)(1-a^2)) 若方程有唯一解,则系数矩阵的秩r(A)=增广矩阵的秩r(A,b)=3,则a-1≠0且2-a-a^2≠0,故a≠1且a≠ -2 若方程无解,则系数矩阵的秩r(A) < 增广矩阵的秩r(A,b),故(2+a)(1-a)=0且 (1+a)(1-a^2) ≠0,所以 a= -2 若方程有无穷多解,则系数矩阵的秩r(A)=增广矩阵的秩r(A,b) < 3,故(2+a)(1-a)=0且 (1+a)(1-a^2) =0,所以a =1 综上所述,a≠1且a≠ -2时方程有唯一解,a= -2时方程无解,a= 1时方程有无穷多解
推荐
- a取何值时,线性方程组(x1+x2+x3=a,ax1+x2+x3=1,x1+x2+ax3=1)无解,有唯一解,有无穷解,并求出有无穷解时求其通解
- 问a取什么值时,线性方程组ax1+x2+x3=1,x1+ax2+x3=a,x1+x2+ax3=a^2,有唯一解;无解;有无穷多个解?
- 线性方程组ax1-x2-x3=1 x1+ax2+x3=1 -x1+x2+ax3=0有唯一解,求a的值
- a取何值时,线性方程组(x1+x2+x3=a,ax1+x2+x3=1,x1+x2+ax3=1)有解,并求其解
- 设3元齐次线性方程组{ax1+x2+x3=0,x1+ax2+x3=0,x1+x2+ax3=0}(1)确定当a为何值时,方程组有非零解;(2)
- 酸碱中和滴定误差问题
- 在诗句中填表示方位的词
- 描写美女的优美古诗
猜你喜欢
- He has been exposed ___English in American over the two years.用into还是to
- 航天飞机和飞船比起有什么优点?
- 1,
- 有两座相距s=1000米的大山,有人在两座山之间大喊一声,先后听到两山的回声,时间相隔4S,设声速u=340m/s.
- excuse me ___is the way to the nearest bookshop please
- 等比数列{An}中,公比q∈(0,1),且A16^2=A20 ,求满足A1+A2+……+An < (1/A1) + (1/A2) + (1/An)的最小自然数n的值
- 宽容是一种润滑剂,可以消除人与人之间的摩擦.仿句
- 关于CO2、O2、SO2三种物质下列那些说法正确?A、都含有氧气 B、都有氧元素 C、都有两个氧原子 D、都有一个氧分子 到底选哪个,最好有分析,