关于x的方程sqr(2-2x^2)-kx+2k=0有两个不等实根,求k取值范围
人气:389 ℃ 时间:2019-10-10 06:47:29
解答
√(2-2x²)=k(x-2)
即:
√(1-x²)=(√2/2)k(x-2)
设:y1=√[(1-x²)],y2=(√2/2)k(x-2)
曲线y1表示以(0,0)为圆心、半径为1的圆的上半个圆;曲线y2=(√2/2)k(x-2)表示过点(2,0)的直线.
结合图像,要使得原方程有两个不等实根,也就是只要使得这两条曲线有两个不同的交点,则:
-(√3/3)
推荐
- 关于x的方程kx^2+(2k+1)x+k=0有两个不等实根.求k的取值范围
- 若关于x的方程2k/x−1−x/x2−x=kx+1/x只有一个解(相等的解也算作一个),试求k的值与方程的解.
- 关于x的方程kx^2+(2k-1)x+k-3=0有两个负根,求k的取值范围
- 若关于x的方程kx^-(2k+1)x-3=0在(-1,1)和(1,3)内各有一个实跟,求k的取值范围
- 若关于x的方程sqr(1-x^2)+2x-m=0只有一个解,则实数m的取值范围为
- dutch 到底是德国还是荷兰?
- 先观察有什么规律,填写空格-1,1,0,1,1,2,( ),5,
- 急死啦,英语词
猜你喜欢