> 数学 >
设方程x^2+px+q=0的两实数根为ab,且有I1=a+b,I2=a^2+b^2,.In=a^n+b^n,求当n≥3时,In+pIn-1+qIn-2
注:n-1,n-2均在I右下角
人气:354 ℃ 时间:2020-06-23 01:44:19
解答
证:由题意,ab=q,a+b=-p.
ln=a^n+b^n=(a^(n-1)+b^(n-1))(a+b)-ab(a^(n-2)+b^(n-2))=-p(ln-1)-q(ln-2).(n≥3)
即In+pIn-1+qIn-2 =0.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版