> 数学 >
设M为椭圆25分之x^2+16分之y^2上的一点,F1、F2为焦点,∠F1MF2=6分之π,求△F1MF2的面积.
人气:115 ℃ 时间:2019-09-19 07:30:00
解答
x^2/25+y^2/16=1
a=5,b=4
c^2=a^2-b^2=25-16=9
c=3,F1F2=2c=6
F1M+F2M=2a=10
(F1F2)^2=(F1M)^2+(F2M)^2-2F1M*F2Mcos(π/6)
=(F1M)^2+(F2M)^2-(3)^(1/2)*F1M*F2M
=(F1M+F2M)^2-(1+3^(1/2))F1M*F2M
F1M*F2M=((F1M+F2M)^2-(F1F2)^2)/(1+3^(1/2))
=(100-36)/(3^(1/2)+1)
=64*(3^(1/2)-1)/(3-1)
=32*(3^(1/2)-1)
面积为1/2*F1M*F2Msin∠F1MF2=1/2*32*(3^(1/2)-1)*sin(π/6)
=8(3^(1/2)-1)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版