> 数学 >
在三角形ABC中,AB=AC=6,P为BC上任意一点.请用学过的知识证明PC×PB+PA²的
人气:191 ℃ 时间:2019-08-20 00:39:33
解答
做出△ABC的外接圆O,设AP延长线交圆O于D,AO延长交BC于M,交圆O于N连结QN.
则:PB*PC=PA*PD ;PC×PB+PA²=PA*PD+PA^2=PA*AD
又AB=AC=6 所以 M为BC中点,且角ADN=90°,角ACN=90°;△APM∽△AND
AP/AN=AM/AD ,PA*AD=AN*AM=AC^2=36
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版