> 数学 >
求第二型曲面积分∫∫s xdydz+ydzdx+zdxdy,其中S是椭球面x2/a2+y2/b2+z2/c2=1外侧
人气:493 ℃ 时间:2020-04-29 08:06:32
解答
设P=x.Q=y,R=z
由高斯公式得到
∫∫s xdydz+ydzdx+zdxdy
=∫∫∫(P'x+Q'y+R'z)dV=3∫∫∫dV (转变成了一个在椭球内的三次积分)
=3*(V椭球)
=3*(4/3)πabc
=4πabc
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版