已知函f(x)是偶函数,而且在(0,+∞)上是增函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明你的判断.
人气:192 ℃ 时间:2019-08-19 10:57:22
解答
f(x)在(-∞,0)上是减函数(1分)
证明:设x1<x2<0则-x1>-x2>0(3分)
∵f(x)在(0,+∞)上是增函数
∴f(-x1)>f(-x2)(7分)
又f(x)是偶函数
∴f(-x1)=f(x1),f(-x2)=f(x2)
∴f(x1)>f(x2)
∴f(x)在(-∞,0)上是减函数(12分)
推荐
- 已知:偶函数f(x)在(0,+∞)上是增函数,判断f(x)在(-∞,0)上的单调性,并证明你的结论.
- 已知函数f(x)是偶函数,而且在(0,正无限大)上是减函数,判断fx在(负无穷大,0)上的单调性,并证明判断.
- 已知函f(x)是偶函数,而且在(0,+∞)上是增函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明你的判断.
- 3.已知函数f(x)是偶函数,而且在(0,+∞)上是减函数,判断f(x)在(-∞,0)上是增函数还是减函数如何证明?
- 已知函f(x)是偶函数,而且在(0,+∞)上是增函数,判断f(x)在(-∞,0)上是增函数还是减函数,并证明你的判断.
- 物体1000N,如果用一个定滑轮提起它,要用_N的力.如果用一个动滑轮提起它,要用_N的力.(不计摩擦及滑轮自重)
- 当HRA值与HRC值相同时,哪个硬度更高.
- 化学中的向上排空气法的原理是什么.
猜你喜欢