柯西不等式和琴生不等式分别是什么?
人气:224 ℃ 时间:2020-05-30 17:55:30
解答
柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的"留数"问题时得到的. 柯西不等式的一般证法有以下几种:■①Cauchy不等式的形式化写法就是:记两列数分别是ai, bi,则有 (∑ai^2) * (∑bi^2) ≥ (∑ai *bi)^2.我们令 f(x) = ∑(ai + x * bi)^2 = (∑bi^2) * x^2 + 2 * (∑ai * bi) * x + (∑ai^2)则我们知道恒有 f(x) ≥ 0.用二次函数无实根或只有一个实根的条件,就有 Δ = 4 * (∑ai * bi)^2 - 4 * (∑ai^2) * (∑bi^2) ≤ 0.于是移项得到结论.
推荐
- 3道 柯西不等式 和 平均不等式 的
- 用排序不等式证柯西不等式
- 用柯西不等式证明该不等式.
- 柯西不等式推导基本不等式
- 已知a,b,c都是正数 a+b+c=1 求证a^3+b^3+c^3>=(a^2+b^2+c^2)/3
- 师异道,人异论,百家殊方,旨意不同...凡不在六艺之科,孔子之术者,皆绝其道,勿使并进...
- 怎样判断一条题目是证明还是求值?
- 已知,如图,在梯形ABCD中,AD//BC,EF是梯形的中位线(两腰中点的连线).求证:EF//AD,EF//BC,EF=0.5(AD+BC).
猜你喜欢