高中数学选修2-1椭圆
已知F1,F2分别是椭圆E:x²/5+y2=1的左、右焦点F1,F2关于直线x+y-2=0的对称点是圆C的一条直径的两个端点.
(Ⅰ)求圆C的方程;
(Ⅱ)设过点F2的直线l被椭圆E和圆C所截得的弦长分别为a,b.当ab最大时,求直线l的方程.
人气:297 ℃ 时间:2019-12-13 10:38:50
解答
(1) 分别作出F1 F2关于直线的对称点 (2,4) (2,0)
得出C(2,2) 半径 2 方程(x-2)^2+(y-2)^2=4
(2) 设直线y=kx-2k
运用点到直线距离公式算出b=4/根号(1+k^2)
联立直线与椭圆方程 得出(k^2+5)y^2+4ky-1=0
设直线与椭圆的两个交点为(x1,y1) (x2,y2)
利用韦达定理 得出 y1+y2=-4k/(k^2+5) y1*y2=-1/(k^2+5)
a=根号((x1-x2)^2+(y1-y2)^2)
=根号((1+k^2)(y1-y2)^2)
(y1-y2)^2=(y1+y2)^2-4y1*y2
=20(k^2+1)/(k^2+5)^2
所以a=2根号5(k^2+1)/(k^2+5)
ab=8根号5*根号(k^2+1)/(k^2+5)
=8根号5*根号(k^2+1)/((k^2+1)+4)
上下同除根号(k^2+1) 得到=8根号5/(根号(k^2+1)+4/根号(k^2+1))
推荐
- (2014•开封模拟)若椭圆x2a2+y2b2=1的焦点在x轴上,过点(1,12 )作圆x2+y2=1的切线,切点分别为A、B,直线AB恰好经过椭圆的右焦点和上顶点,则椭圆方程是( ) A.x29+y24=1 B.x24+y25=1 C.
- 椭圆
- 已知曲线方程x^2sinα-y^2cosα=1(0≤α≤2pai);
- 点P是椭圆16X方+25Y方=1600上一点,F1,F2,是椭圆的两个焦点.又知点P在X轴上方,F2为椭圆的右焦点,直线PF2的斜率为负的四倍更号3,求三角PF1F2的面积
- 点P是椭圆16X方+25Y方=1600上一点,F1,F2,是椭圆的两个焦点.又知点P在X轴上方,F2为椭圆的右焦点,直线PF2的斜率为负的四倍更号3,求三角PF1F2的面积
- 124578 这几个数组成个六位数的数字的3倍也是用着六个数组成的,
- 描写香气的词语
- 已知三的2m次幂等于5,3的n次幂等于十求:三的2m一n次幂,9的m一n次幂,9的2m一n次幂.咋做?
猜你喜欢