如果正整数n有以下性质:n的八分之一是平方数,n的九分之一是立方数,它的二十五分之一是五次方数,那么n就称为“希望数”,则最小的希望数是______.
人气:224 ℃ 时间:2019-08-18 22:21:12
解答
设最小的希望数是n,则n能被8,9,25整除,8,9,25两两互质既然是最小的,就不应该有其它的因数了,
n=8a•9b•25c因为n的八分之一是平方数,所以a是奇数,b和c是偶数因为n的九分之一是立方数,
所以b除以3余数是1,a和c能被3整除因为n的二十五分之一是五次方数,
所以c除以5余数是1,a和b能被5整除所以a最小是5,b最小是10,c最小是6,
所以最小的希望数是215•320•512=30233088000000.
故答案为:215•320•512.
推荐
猜你喜欢
- get along with 一般过去式 现在进行时造句
- 分数一定是有理数吗?为什么?355/113如何循环?
- 在黑板上写出三个整数,然后擦去一个换成其他两数的和减1,这样继续操作下去,最后得到17,1967,1983,问原来写的三个整数能否为2,2,
- 在9:4中,若比的前项增加13.5,要使比值不变,比的后项应( ).A:加13.5 B:乘2.5 C;乘13.5
- 我的画像作文怎么写
- pa6和PA66的鉴别方法是什么
- 分析黄巢起义发生的原因,失败原因和历史意义.
- 求 制取少量O2的化学方程式!只允许用 Hcl H2SO4 H2O Zn CaCo3 任选!