若函数f(x)=-|x|在区间[a,+∞﹚上为减函数,则实数a的取值范围是______.
人气:223 ℃ 时间:2019-08-19 05:36:28
解答
由于函数f(x)=-|x|在区间[0,+∞﹚上为减函数,且函数在区间[a,+∞﹚上也为减函数,
故有a≥0,
故答案为:[0,+∞).
推荐
- 若f(x)在(0,+∞)上是减函数,而f(ax)在(-∞,+∞)上是增函数,则实数a的取值范围是( ) A.(0,+∞) B.(1,+∞) C.(0,1) D.(0,1)∪(1,+∞)
- 如果函数f(x)=x2+2(a-1)x+2在(-∞,4]上是减函数,那么实数a取值范围是( ) A.a≤-3 B.a≥-3 C.a≤5 D.a≥5
- 如果f(x)=x^2+2(a+1)x-2在区间(负无穷大,4)上是减函数,则实数a的取值范围是_?
- 若函数f(x)=-|x-1|在[a,+无穷大)上是减函数,则实数a的取值范围是?
- 函数y=x^2-2ax+a^2-1在(-无穷大,1)上是减函数,则实数a的取值范围是?
- 三角形、圆形、正方形代表三个数
- 用英文来写,二十年后我的生活将是什么样子,作文,七十个单词
- 三月计划生产彩笔3500盒上半月完成了计划的百分之五十五,下半月计划百分之五这
猜你喜欢