已知集合A={x|x2-2x-8=0},B={x|x2+ax+a2-12=0},B⊆A,求实数a的取值范围组成的集合.
人气:110 ℃ 时间:2020-04-01 20:37:34
解答
A={x|x2-2x-8=0}={x|(x-4)(x+2)=0}={-2,4},
当B=∅时,△=a2-4(a2-12)<0,解得 a>4或 a<-4.
当B≠∅时,若B中仅有一个元素,则,△=a2-4(a2-12)=0,解得 a=±4,
当a=4时,B={-2},满足条件;当a=-4时,B={2},不满足条件.
当B中有两个元素时,B=A,可得a=-2,且 a2-12=-8,故有a=-2 满足条件.
综上可得,实数a的取值集合为{a|a<-4,或 a≥4,或 a=-2 }.
推荐
- 已知关于x的不等式ax²-2ax+2a+3>0有解,求实数a的取值范围.
- 已知关于x的方程ax^2+2x+1=0至少有一个负根,求实数a的取值范围
- 已知集合A=﹛x|x² - 4=0﹜,集合B=﹛x|ax - 2=0﹜,若B包含于A,求实数a的取值集合
- 已知集合A={x|ax²+2x-1>0},B={x|x>0}.若A∩B≠Φ,求实数a的取值范围.
- 已知集合A={x|ax²+x+1=0,x∈R}且A∩{x|x≥0}=∅求实数a的取值范围
- 77%×99+23%×99 = =
- 加热白糖,白糖发生了什么变化
- 若数轴上表示x的点与原点的距离小于5,则x满足的不等式是
猜你喜欢