bn=1/n(a1+a2+...+an)
=1/n *(a1+an)n/2
=(a1+an)/2
=a1+(n-1)d/2
设cn=an-bn=(1-n)d/2=d/2-nd/2
S25-T25=c1+c2+...+c25
=25*d/2-(1+2+..+25)d/2
=-(1+2+...+24)d/2
=-150d∈(0,1),
-1/150
推荐
- 已知等差数列{an}的公差d>0,a2,a5是方程x^2-12x+27=0的两个根,数列{bn}的前n项和为tn,且tn=1-...
- 已知{an}是公差为d的等差数列,它的前n项和为Sn,S4=2S2+4,bn=(1+an)/an.
- 已知等差数列{an}中,a1=a,公差d=1,若bn=an^2-a(n-1)^2,试判断数列{bn}是否为等差数列
- 等差数列{an}中,a1=3,公差d=2,Sn为前n项和,求1/S1+1/S2+…+1/Sn.
- 等差数列an中,a1=a,公差d=1,bn=an^2-a(n+1)^2,判断bn是否为等差数列
- 雨下的多么大啊!.翻译成英语
- 天空究竟是蓝的还是绿色?你们知道吗
- 虫字旁一个乔,是什么字.问字的发音,
猜你喜欢