等差数列共有2n 1项 所有奇数项和为132 所有偶数项和为120 则n=?
人气:136 ℃ 时间:2019-09-16 20:53:13
解答
数列的第一项是a1,属于奇数项
因此,只能是n+1个奇数项,n个偶数项
奇数项和=(n+1)a(n+1)=132
偶数项和=(n)a(n+1)=120
两式相除
(n+1)/n=132/120=11/10
得n=10
推荐
- 等差数列共有2n+1项,所有奇数项的和为132,所有偶数项的和为120,则n=( ) A.9 B.10 C.11 D.不确定
- 等差数列共有2N+1项,所有奇数项之和为132,偶数项之和为120,则N=
- 等差数列共有2n+1项,所有奇数项的和为132,所有偶数项的和为120,则n=( ) A.9 B.10 C.11 D.不确定
- 一等差数列{ak}共有n项,n为奇数,所有奇数项的和为132,所有偶数项的和为120
- 一等差数列{ak}共有n项,n为奇数,所有奇数项的何为132,所有偶数项的何为120,
- 3a三次方—12a平方+12a分解因式
- I live with my mum,dad and grandma in a small honse in Edinburgh,in the north of England.
- 一个长方体游泳池长60米,宽30米,深2米,游泳池的占地面积是多少平方米?沿游泳池的内壁1.5米处用红
猜你喜欢