F是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为1/2.点C在X轴上
BC⊥BF,B,C,F三点确定的圆M恰好与直线l1:x+根号3*y+3=0相切.
1.求椭圆的方程
2.过点A的直线l2与圆M交于P,Q两点,且向量MP*向量MQ=-2,求直线l2的方程.
人气:292 ℃ 时间:2019-08-18 06:01:43
解答
你自己修改格式 (1)因为椭圆的离心率为12,所以ca=12,即a=2c,b=3c
所以A(-2c,0),B(0,3c),F(-c,0).kBF=3,故kBC=-33,
所以BC得方程为y=-33x+3c
令y=0,得x=3c,即C(3c,0),所以圆M的半径为12FC=2c,圆心M(c,0)
因为圆M恰好与直线l1:x+3y+3=0相切,
所以|c+3|2=2c,∴c=1,∴a=2,b=3
故所求的椭圆方程为x24+y23=1
(2)因为MP→•MQ→=|MP→||MQ→|cos∠PMQ=2×2cos∠PMQ=-2,
所以∠PMQ=120°.所以M到直线l2的距离等于1
依题意,直线l2的斜率存在,设直线l2:y=k(x+2),即kx-y+2k=0
所以|k+2k|k2+1=1,解得k=±24,
故所求的直线l2的方程为y=±24(x+2)
推荐
- F是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为1/2.点C在X轴上,
- 已知椭圆y^2/a^2+x^2/b^2=1(a>b>0)的离心率为√2/2,且两个焦点和短轴的一个端点是一个等腰三角形的顶点.
- 已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为1/2,长轴长为4,M为右顶点,过右焦点F的直线与椭圆交于A、B两点,直线AM、BM分别交于P、Q两点,(P、Q两点不重合)(1)求椭圆的标准方程(2)当直线AB与x轴垂直时
- 若椭圆短轴上的两顶点与一焦点的连线互相垂直,则离心率等于( ) A.12 B.22 C.2 D.2
- 椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点,则椭圆的离心率为_.
- “山东普惠利好商贸有限公司”翻译成英文,
- 语文练习册45页习作
- 某长方形花圃,长16米,宽10米,为了便于游人观赏,周围修了一条2米宽的道路.道路的面积是多少平方米?
猜你喜欢