已知数列{an}满足a1=4,an=4-4/a(n-1)(n≥2),令bn=1/ an-2.1、求证:数列{bn}是等差数列 2、求数列{an}通项
人气:146 ℃ 时间:2019-08-17 21:26:55
解答
你好
an=4-4/a(n-1)
an-2
=2-4/a(n-1)
=2[a(n-1)-2]/a(n-1)
1/(an-2)=a(n-1)/2[a(n-1)-2]
1/(an-2)=[a(n-1)-2+2]/2[a(n-1)-2]
1/(an-2)=1/2+1/[a(n-1)-2]
1/(a1-2)=1/2
bn=1/(an-2)=1/2+b(n-1)
bn-b(n-1)=1/2
所以数列{bn}是以1/2为首项,以1/2为公关的等差数列,
bn=n/2
1/(an-2)=n/2
得an=(2/n)+2
【数学辅导团】为您解答,不理解请追问,理解请及时采纳为满意回答!(*^__^*)谢谢!
推荐
- 已知数列an满足a1=4,an=4 - 4/an-1 (n>1),记bn= 1 / an-2 .(1)求证:数列bn是等差数列
- 已知数列{an}中,a1=3/5,an=2-1/an-1(n》2),数列{bn)满足bn=1/an-1.求证数列{bn}是等差数列.
- 数列{an}满足a1=4,an=4-4/an−1(n≥2),设bn=1/an−2. (1)判断数列{bn}是否为等差数列并证明; (2)求数列{an}的通项公式.
- 在数列}an}中,a1=2,an=2an-1+2^n+1(n》=2) 令bn=an/2^n,求证{bn}是等差数列.
- 已知等差数列{an}中,a1=a,公差d=1,若bn=an^2-a(n-1)^2,试判断数列{bn}是否为等差数列
- (他们有很多共同点和不同点)用英语怎么说?
- 欧阳修的《别滁)一诗,:花光浓烂柳轻明,酌酒花前送我行.我亦且如常日醉,莫教弦管作离声.诗人为什
- 这里的 lead 是领导
猜你喜欢