(1)证明:∵△ABD为等边三角形且G为AD的中点,
∴BG⊥AD
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,
∴BG⊥平面PAD
(2)证明:∵△PAD是等边三角形且G为AD的中点,
∴AD⊥PG
∵AD⊥BG,PG∩BG=G,
∴AD⊥平面PBG,PB⊂平面PBG,
∴AD⊥PB;
(3)∵AD⊥PB,AD∥BC,∴BC⊥PB,
∵BG⊥AD,AD∥BC,
∴BG⊥BC,
∴∠PBG是二面角A-BC-P的平面角,
在直角△PBG中,PG=BG,∴∠PBG=45°,
∴二面角A-BC-P的平面角是45°.