已知矩形的周长为36cm,矩形绕它的一条边旋转形成一个圆柱,矩形的长、宽各为多少时,旋转的侧面积最大?
人气:324 ℃ 时间:2019-11-07 05:21:12
解答
设矩形的长为a,宽为b,
∵矩形的周长为36,
∴2(a+b)=36,
解得:b=18-a,
∵旋转形成的圆柱侧面积是:2πab,
∴要求侧面积最大,即求ab的最大值,
ab=a(18-a)=18a-a2
=-(a-9)2+81,
∴当a=9时ab有最大值81,
此时b=9.
答:矩形的长,宽都为9时,旋转形成的圆柱侧面积最大.
推荐
- 已知矩形的周长为36cm,矩形绕它的一条边旋转形成一个圆柱,矩形的长、宽各为多少时,旋转的侧面积最大?
- 已知矩形的周长为36cm,矩形绕它的一条边旋转形成一个圆柱,矩形的长、宽各为多少时,旋转的侧面积最大?
- 已知矩形的周长为36cm,矩形绕它的一条边旋转形成一个圆柱,矩形的长、宽各为多少时,旋转的侧面积最大?
- 已知矩形的周长为36cm,矩形绕它的一条边旋转形成一个圆柱,矩形的长、宽各为多少时,旋转的侧面积最大?
- 已知矩形的周长为36cm,矩形绕它的一条边旋转形成一个圆柱,矩形的长、宽各为多少时,旋转的侧面积最大?
- 一块长方形铁片,长18.84DM,宽5dm,用这块铁皮卷成一个圆柱形水桶的侧面,另配一个底面制成一个底面积最大
- 中国历史上推行法家学派治理国家的有为皇帝都有哪些?
- f(x)在[a,b]上连续,在(a,b)可导,且在(a,b)内f(x)的二阶导数小于0,证明f(x)是单调递减的 是知道怎么证明
猜你喜欢