已知a、b、c均为正整数,且满足a2+b2=c2,又a为质数.
证明:(1)b与c两数必为一奇一偶;(2)2(a+b+1)是完全平方数.
人气:414 ℃ 时间:2019-08-21 13:25:37
解答
证明:(1)∵a2+b2=c2,
∴a2=c2-b2=(c+b)(c-b),
因为a是质数,而(c+b)和(c-b)不可能都等于a,所以c-b=1,c+b=a2,得到c=b+1,
则b,c是两个连续的正整数,
∴b与c两数必为一奇一偶;
(2)将c=b+1代入原式得:
a2+b2=(b+1)2=b2+2b+1
得到a2=2b+1
则a2+2a+1=2b+1+2a+1=2(a+b+1)
左边等于(a+1)2是一个完全平方数,
所以右边2(a+b+1)是一个完全平方数,得证.
推荐
- 已知a、b、c均为正整数,且满足a的平方+b的平方=c的平方,又a为质数,求证:①a、b两数必为一奇一偶;
- 已知a、b、c均为正整数,且满足a^2+b^2=c^2,又a为质数.证明:(1).b与c两数必为一奇一偶 (接下)
- 已知a、b、c均为正整数,且满足a2+b2=c2,又a为质数. 证明:(1)b与c两数必为一奇一偶;(2)2(a+b+1)是完全平方数.
- abc为十进制素数,证明b^2-4ac不是完全平方数
- 我是一个质数,我和另一个质数的和是最大的两位数,我比较小.猜猜我是谁.
- 一条神经属于哪个结构层次?为什么呢?
- 修一个圆形水池,它的底面半径是4米,池深2.5米.它能蓄水多少升?
- 选择单词,用其适当的形式填空,使短文意思正确、通顺.(每词限用一次)
猜你喜欢