一个众所周知的命题是:三角形ABC三边BC,CA,AB的中点依次为A1\B1\C1,则线段A1B1,B1C1,C1A1把三角形ABC分成四个面积相等的三角形,现请你证明它的逆命题:在三角形的边BC,CA与AB上取点A1.B1.C1.A1B1,B1C1,与C1A1分三角形ABC为四个面积相等的三角形.求证:A1,B1,C1是三角形ABC各边的中点.
答对的有加分的= help~
人气:335 ℃ 时间:2019-08-20 17:30:41
解答
我是死算的
证明:对三边都进行2(m+n)等分,设AC1取2m等分 C1B取2n 等分
以三角形AC1B1为例AB1与AC1上的高是成比例的,所以面积可以用AC1*AB1*常数来表示=1/4三角形的面积=(m+n)(m+n)*常数,常数是相同的可以约去,同理可知B1C*CA1=A1B*BC1= (m+n)(m+n)
由此可得
AB1=(m+n)(m+n)/2m
B1C=(m+n)(3m-n)/2m
CA1=(m+n)2m/(3m-n)
A1B=(m+n)2(2m-n)/(3m-n)
则A1B*C1B=(m+n)(m+n)
化简得到3(m-n)(m-n)=0
故m=n ,所以A1,B1,C1是三角形ABC各边的中点
推荐
- 如图,对面积为1的△ABC逐次进行以下操作:第一次操作,分别延长AB、BC、CA至A1、B1、C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1、B1、C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A
- 已知点I是锐角三角形ABC的内心,A1、B1、C1分别是点I关于边BC,CA,AB的对称点,若点B在△A1B1C1的外接圆上,则∠ABC等于_.
- 点A1,A2,B1,B2,C1,C2,分别是△ABC的边BC,CA,AB,上的三等分点,且三角形ABC的周长为L
- 设p是正三角形abc内的一点,分别作p关于直线ab,bc,ca的对称点c1.a1,b1,记三角形abc,三角形a1b1c1的面积分别为s,s1,求证:s1
- 把三角形ABC的三边CA,AB,BC分别延长至A1,B1,C1,使AA1=AC,B1B=AB,C1C=BC.连接A1B1,B1C1,A1C1,如果三角形AB
- 英语中的问候语与祝福语的区别
- 我们生物课每天都要说一个小故事,关于生物的,到前面讲,时间规定于2分钟左右,提供2个小故事.我的同学
- 1.举例说明日常生活中你所见到的丁达尔效应. 2.探究中你发现或提出的问题.
猜你喜欢