椭圆ax^2+by^2=1与直线x+y=1相交于A,B两点,C为AB中点,|AB|=2√2,O为坐标原点,OC的斜率为√2/2
求椭圆方程
人气:475 ℃ 时间:2019-10-17 06:26:44
解答
设A(x1,y1),B(x2,y2),用点差法得,
a(x1-x2)(x1+x2)+b(y1-y2)(y1+y2)=0,(y1-y2)/(x1-x2)= -1,
所以OC的斜率=(y1+y2)/(x1+x2)=a/b=√2/2,所以a√2=b,①
所以椭圆ax^2+(√2)ay^2=1,与直线x+y-1=0联立,得
ax^2+b(x-1)^2=1
(a+b)x^2-2bx+b-1=0
x1+x2=2b/(a+b)
x1x2=(b-1)/(a+b)
再由|AB|=2√2=[√(1+kAB^2)]*√[(x1+x2)^2-4x1x2]=√[(x1+x2)^2-4x1x2]√2,
即2=√[(x1+x2)^2-4x1x2]=√{[2b/(a+b)]^2-4[(b-1)/(a+b)]} 两边平方得
b^2=(a+b)(b-1)化简得 a+b=ab ②
将①②联立方程组
最后解得a=(2+√2)/2,b=1+√2
所以椭圆方程为[(2+√2)/2]x^2+(1+√2)y^2=1
推荐
- 设椭圆ax2+by2=1与直线x+y-1=0相交于A、B两点,点C是AB的中点,若|AB|=22,OC的斜率为22,求椭圆的方程.
- 椭圆ax2+by2=1与直线x+y-1=0相交于A、B两点,C是AB的中点,若|AB|=2√2,O为坐标原点,OC的斜率为(√2)/
- 椭圆ax^2+by^2=1与直线X+Y-1=0相交于AB两点,C是AB中点,若AB=2根号2,0为原点,OC斜率为根号2/2 求a.b
- 椭圆ax^2+by^2=1与直线x+y=1相交于A,B两点,C为AB中点,|AB|=2√2,O为坐标原点,OC的斜率为√2/2
- 若椭圆 ax*2+by*2=1 与直线x+y=1 交于A,B两点,M为AB中点,直线OM (O为原点)的斜率为1/2,且OA⊥OB,求椭
- 是不是雨水这个节气前后是要下雨的?我的印象中好像就是那段时间就经常下雨!
- 因式分解x^2-2xy-8y^2-x-14y-6
- 解方程:5分之7x=15分之14 要过程
猜你喜欢