> 数学 >
证明:整数a若不能被2和3整除,则a^2+23必能被24整除.
人气:390 ℃ 时间:2020-01-29 22:45:46
解答
设a=6n+1 或 a=6n-1
a^2+23=a^2-1+24
a^2+23必能被24整除
a^2-1+24必能被24整除
a^2-1必能被24整除
(a+1)(a-1)必能被24整除
6n*(6n+2)或6n*(6n-2)必能被24整除
12*n*(n+1)或12*n*(n-1)必能被24整除
因为n*(n+1)或n*(n-1)必有一个偶数,12*n*(n+1)或12*n*(n-1)必能被24整除
a^2+23必能被24整除.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版