已知A,B,C分别为三角形ABC的三边a,b,c所对的角,向量m=(sinA,sinB),n=(cosB,cosA),且mxn=sin2C.
1.求角C的大小
2.若sinA,sinC,sinB成等差数列,且向量CA(AB-AC)=18,求边c的长
人气:471 ℃ 时间:2019-08-20 00:46:04
解答
(1)向量mxn=sinAcosB+sinBcosA=sin(A+B)=sinC,
∴sinC=sin2C,∴sinC(1-2cosC)=0,
∴cosC=1/2,又C为三角形内角,∴C=π/3.
(2)sinA+sinB=2sinC,
∴a+b=2c.(正弦定理)
∴a^2+^2b+2ab=4c^2.(1)
∵向量CA(AB-AC)=18,∴向量CA·CB=18,
∴|CA||CB|cosπ/3=18,即ab=36.(2)
由余弦定理,c^2=a^2+b^2-ab,(3)
由(1)(2)(3)解得:
∴c=6.
推荐
- 已知向量m=(sinA,cosA),n=(cosB,sinB),m*n=sin2C且A,B,C分别为三角形ABC三边a,b,c所对的角.
- 在三角形ABC中,三边a,b,c所对的角分别为A,B,C,向量m=(sinA,cosA),n=(cosB,sinB)
- 已知三角形abc中角a、b、c所对边分别是a、b、c,设向量m=(a,b),n=(sinb,sina),p=(b-2,a-2),若向量m与向量p垂直,边长c=2角C=π/3,求△ABC的面积
- 已知△ABC中,三边条边a,b,c所对的角分别为A,B,C,向量m=(cosA,sinA),n=(sinB,cosB)且满足m·n=sin2C.
- 已知向量m=(sinA,sinB),向量n=(cosB,cosA),若向量m*向量n=sin2C,且A,B,C分别为△ABC的三边
- 已知OD平分角AOC,OE平分角BOC,且DOE是90°,问,A、O、B三点在一条直线上吗?为什么?
- 根据汉语或首字母提示填写下列单词.
- 造句(按词语的不同意思各造一句):情愿:①心里愿意②宁可、宁愿.情愿①— 情愿②—
猜你喜欢