在三角形ABC内任取一点O,分别连接AO、BO、CO并延长交对边于A',B',C'.求证:OA'/AA'+OB'/BB'+OC'/CC'=1
辅助线ah垂直bc.oh垂直bc
人气:483 ℃ 时间:2019-10-23 08:28:07
解答
用面积证
由于面积之比等于高之比等于OA'/AA'之比
S三角形ABC=一半的BC乘以AH
H是A的高
S三角形OBC=一半的BC乘以OH’
H'是O到BC的的垂足
而根据相似三角形OA'H'与AAH相似 那么OA'/AA'=AH/OH'
所以:
OA'/AA'=S三角形OBC/S三角形ABC
同理:
OB'/BB'=S三角形OAC/S三角形ABC
OC'/CC'=S三角形OAB/S三角形ABC
三个加起来当然应该等于S三角形ABC/S三角形ABC=1
推荐
- 在三角形ABC内任取一点O,分别连接AO、BO、CO并延长交对边于A',B',C'.求证:OA'/AA'+OB'/BB'+OC'/CC'=1
- 三角形ABC中,A',B',C'分别在BC,CA和AB上,一直AA',BB',CC'相交一点O,b并且AO/OA'+BO/OB'+CO/OC'=92,
- 点o是三角形ABC中的任意一点,连接AO,BO,CO 求证:AB+AC>OB+OC AB+BC+AC>OA+OB+OC
- 如图,o是三角形ABC内任意一点,连接AO,BO,CO.求证:AB+BC+AC>OA+OB+OC
- 如图,点O是△ABC外的一点,分别在射线OA,OB,OC上取一点A′,B′,C′,使得OA′OA=OB′OB=OC′OC=3,连接A′B′,B′C′,C′A′,所得△A′B′C′与△ABC是否相似?证明你的结论.
- 1.y=x三次方-1的零点是 2.求函数y=x平方-2在[1,2]的零点【精确到0.1】
- 用英语怎么说:摆脱困境和责任和感到吃惊 off the hook & taken aback (274)
- 高一数学正余弦定理 在三角形ABC中,2sinBsinA=sinC, 问ABC的形状一定是?详细过程!
猜你喜欢