在三角形ABC内任取一点O,分别连接AO、BO、CO并延长交对边于A',B',C'.求证:OA'/AA'+OB'/BB'+OC'/CC'=1
人气:338 ℃ 时间:2019-11-07 04:24:23
解答
过O作MN平行于BC,交AB于M,交AC于N,
则OB'/BB'=ON/BC
OC'/CC'=MO/BC
两式相加,
有OB'/BB'+PG/CG=AN/AC
因为OA'/AA'=CN/AC
所以OA'/AA'+OB'/BB'+OC'/CC'=1
推荐
- 在三角形ABC内任取一点O,分别连接AO、BO、CO并延长交对边于A',B',C'.求证:OA'/AA'+OB'/BB'+OC'/CC'=1
- 三角形ABC中,A',B',C'分别在BC,CA和AB上,一直AA',BB',CC'相交一点O,b并且AO/OA'+BO/OB'+CO/OC'=92,
- 点o是三角形ABC中的任意一点,连接AO,BO,CO 求证:AB+AC>OB+OC AB+BC+AC>OA+OB+OC
- 如图,o是三角形ABC内任意一点,连接AO,BO,CO.求证:AB+BC+AC>OA+OB+OC
- 如图,空间三条直线AA′,BB′,CC相交于O点,且AO=A′O,BO=B′O,CO=C′O.求证:平面ABC平行于平面A′B′C′.
- 一起重机将重为1.2乘以10的4次方的钢材竖直匀速提升2m后,又沿水平方向匀速移动5m在整个过程中起重机对钢材做的功为多少J
- 我们读书不能死读书,读死书,只读有字之书,还要多参加社会实践活动,因为“
- 关于纸的燃烧
猜你喜欢