一般地,我们可以用配方求抛物线y=ax^2 + bx + c(a≠0)的顶点与对称轴. y=ax^2 + bx + c =a[x+(b/2a)]^2 +
一般地,我们可以用配方求抛物线y=ax^2 + bx + c(a≠0)的顶点与对称轴.
y=ax^2 + bx + c
=a[x+(b/2a)]^2 + (4ac-b^2)/4a,
不是等于(b^2-4ac)/4a^2 ?
人气:331 ℃ 时间:2020-02-03 16:41:15
解答
y=ax^2+bx+c
=a(x^2+bx/a)+c
=a[x^2+bx/a+b^2/(2a)^2]-b^2/(4a)+c
=a[x+b/(2a)]^2-b^2/(4a)+c
=a[x+(b/2a)]^2 + (4ac-b^2)/4a
步骤:1.把二次项的系数提出
2.将括号内的项进行配方
3.去括号,合并
推荐
- 一般地,我们可以用配方求抛物线y=ax^2 + bx + c(a≠0)的顶点与对称轴.y=ax^2 + bx + c =a[x+(b/2a)]^2 +
- 抛物线y=ax^2+bx+c的对称轴公式是什么?
- 抛物线y=ax^2+bx+c经过(-1,-22),(0,-8),(2,8)三点,求它的开口方向,对称轴和顶点坐标
- 抛物线y=ax2+bx+c,与x轴交于点A(-3,0),对称轴为x=-1,顶点C到x轴的距离为2,求此抛物线的解析式.
- 抛物线y=ax平方+bx+c经过{-1,-22}、{0,-8}、{2,8}三点求它的开口方向,对称轴和顶点坐标 我知道答案看下面
- 计算1+3+5+7+9+11+13+15+17+19.
- 蜜蜂的巢是六边形(数学问题)
- 一个物体做匀速圆周运动,合外力做的功一定是0吗?
猜你喜欢