已知向量a=(1,1)向量b=(1,m)其中m为实数O为原点
已知向量a=(1,1),b=(1,m),其中m为实数,O为原点,当两向量夹角在(0,π/12)变动时,m的取值范围是A(0,1) B(根号3/3,根号3) C(根号3,1)U(1,根号3) D(1,根号3)
人气:460 ℃ 时间:2020-01-29 20:39:24
解答
答案B是错的,应该是C
但题目中的C写得也不对,应该是:
C(√3/3,1)U(1,√3)
数形结合:
b位于a的下方时,极限位置是:=π/12
即:b与x轴正向的夹角是π/6
此时,m=1*tan(π/6)=√3/3
b位于a的上方时,极限位置是:=π/12
即:b与x轴正向的夹角是π/3
此时,m=1*tan(π/3)=√3
但b在变化过程中,不能与a重合,即:m≠1
故:m∈(√3/3,1)U(1,√3)
----------------------------------
解析推导也可:
cos=a·b/(|a|*|b|)=(m+1)/(√2*√(m^2+1))
cos∈((√3+1)/(2√2),1)
(m+1)/(√2*√(m^2+1))0,故:m≠1
(m+1)/(√2*√(m^2+1))>(√3+1)/(2√2)
解得:√3/3
推荐
- 对于实数m和向量a、b恒有:m(a-b)=ma-mb;(2)对于实数m,n和向量a,恒有:(m-n)a=ma-na;(3)若ma=mb(m∈R),则a=b;(4)若ma=na(m,n∈R,a≠0),则m=n.其中错误的命题是 哪个为什么?
- 如果直线x+y+m=0与圆x^2+y^2=2交于相异两点A、B,O是坐标原点,|向量OA+OB|>|向量OA-OB|,那么实数m的取值范
- 已知向量OA=(1,1),向量OB=(1,a),O为坐标原点,当向量OA与向量OB的夹角在【0,π/12】内变动时,实数a的取
- 已知向量a=(1,−2),b=(1+m,1−m),若a∥b,则实数m的值为( ) A.3 B.-3 C.2 D.-2
- 已知向量a=(m,-2) b=(1,m+1),若a⊥b 则实数m
- 美丽的秋天作文,300字的
- 早期的蝌蚪很像鱼,从外形上看像鱼的特点是
- 把2007465000,四舍五入到万位记作 万,省略亿后面的尾数是 亿
猜你喜欢