在三角形ABC中,cosB=-5/13,cosC=4/5,(1)求sinA的值
由cosB=-5/13,cosC=4/5得
sinB=12/13,sinC=3/5
在三角形ABC中,
sinA=sin(180-A)=sin(B+C)
=sinBcosC+cosBsinC
=12/13*4/5+(-5/13*3/5)=33/65
人气:178 ℃ 时间:2019-10-19 16:51:56
解答
∵ (cosB)^2+(sinB)^2=1,(cosC)^2+(sinC)^2=1∴ (sinB)^2=1-(cosB)^2=1-(-5/13)^2=1-25/169=144/169(sinC)^2=1-(cosC)^2=1-(4/5)^2=1-16/25=9/25从而 sinB=12/13,sinC=3/5在三角形ABC中,A+B+C=180°∴ A=180°-B-C从...
推荐
猜你喜欢
- 为什么稀有气体元素的原子半径不是同周期中最小的?
- 21,22,23,24,25,26,27,28,29用英语咋念
- is it on desk Wang Bing's 排序
- 小军和小明的邮票同样多,小军取出180张,小明取出350张,这时小军剩下的刚好是小明1.5倍,两人原有多少张
- "she does not sometimes go to the movies" 该句式是不是对的?
- 真光合 与 净光合 什么关系
- 氯酸钾和稀盐酸的反应方程式 KClO3+HCl====?
- 贾平凹的《月迹》中优美句子